
Centralized Modified Estimated Load Information
Scheduling Algorithm with Reduced

Communication delays

Amit Kumar Sharma

Assistant Professor, PSIT-COE Kanpur, U.P

Abstract- In this paper we have successfully reduced the total
execution time of jobs submitted in a computational grid. We
have addressed several important issues like cost, reliability and
scalability. Centralized Melisa is a load balancing algorithm in
which a task is scheduled by a central scheduler on several
status parameters like job queue length, job arrival rate, service
rate. MELISA, which is applicable to large-scale systems (that
is, interGrid [1]), is a modified version of ELISA [2] in which we
consider the job migration cost, resource heterogeneity, and
network heterogeneity when load balancing is considered. A
computational Grid is the cooperation of distributed computer
systems where user jobs can be run on either local or remote
computer systems In general, any load-balancing algorithm
consists of two basic policies—a transfer policy and a location
policy. The transfer policy decides if there is a need to initiate
load balancing across the system. By using workload
information, it determines when a node becomes eligible to act
as a sender (transfer a job to another node) or as a receiver
(retrieve a job from another node).

Index terms- grid, melisa, cmelisa, elisa, load balancing,
communication delays

I. INTRODUCTION
In general, any load-balancing algorithm consists of two
basic policies—a transfer policy and a location policy. The
transfer policy decides if there is a need to initiate load
balancing across the system. By using workload information,
it determines when a node becomes eligible to act as a sender
(transfer a job to another node) or as a receiver (retrieve a job
from another node). The location policy determines a suitably
underloaded processor. In other words, it locates
complementary nodes to/from which a node can send/receive
workload to improve the overall system performance.
Location-based policies can be broadly classified as sender
initiated, receiver initiated, or symmetrically initiated. In a
static algorithm, the scheduling is carried out according to a
predetermined policy. The state of the system at the time of
the scheduling is not taken into consideration. On the other
hand, a dynamic algorithm adapts its decision to the state of
the system. Adaptive algorithms are a special type of
dynamic algorithms where the parameters of the algorithm
and/or the scheduling policy itself is changed based on the
global state of the system.

Dynamic load balancing algorithms can be further classified
into a centralized approach and a decentralized approach.
In the centralized approach only one node in the grid acts as
the central controller. It allocates jobs to each of the slave
nodes. The slave nodes execute the jobs assigned by the
controller. The centralized approach is a simple approach and
is beneficial when the communication cost is less significant.
It is mainly used for a small size grid. Although the
centralized approach is used currently, it limits the scalability
of the grid by becoming a bottle neck. Also failure of central
controller can cause the entire system to fail. [5].
In the decentralized approach all nodes in the grid are
involved in making the load balancing decision. The
decentralized algorithms are scaleable and have better fault
tolerance. The decentralized approach is preferred because
elements of the network may vary in capacity or number
during run time. Although the decentralized approach is
suitable for dynamic heterogeneous resources it increases the
communication overhead to a large extent. [5]

II. METRICS FOR COMPARING VARIOUS DYNAMIC

LOAD BALANCING ALGORITHMS FOR HETEROGENEOUS

RESOURCES

The various metrics identified for comparing the load
balancing algorithms are-
•Communication overhead- communication overhead is the

status information which each node has to provide to
other nodes in the grid.

• Load balancing time - Amount of time that elapses
between the job arrival time and the time at which the
job is finally accepted by a node.

• Scalability - It is the ability of the algoritm to perform load
balancing for a grid with any finite number of nodes.

•Fault tolerance - It is the ability of the algorithm to perform
uniform load balancing in spite of arbitrary node or link
failure.

•Reliability - It is the ability of the algorithm to schedule job
in predetermined amount of time.

•Stability - It is defined as the maximum job arrival rate
 which the load balancing algorithm.

Amit Kumar Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 404-409

www.ijcsit.com 404

III. VARIOUS DYNAMIC LOAD BALANCING

ALGORITHMS
The centralized and decentralized load balancing algorithms
can be further classified into sender-initiated algorithms,
receiver-initiated algorithms and symmetrically initiated
algorithms according to their location policies. Sender
initiated algorithms let the heavily loaded nodes take the
initiative to request the lightly loaded nodes to receive the
jobs; while receiver initiated algorithms let the lightly loaded
nodes invite heavily loaded nodes to send their jobs.
Symmetrically-initiated algorithms combine the advantages
of both sender and receiver initiated algorithms. [5][1] Lee et
al., [8] propose in the receiver initiated receiver broadcasting
algorithm that whenever a processor in the grid becomes idle
it broadcasts a request message. After receiving this request,
the most heavily loaded node sends a task to the idle
processor. This algorithm does not require an information
process to collect the load information of other nodes, which
incurs heavy communication traffic. This algorithm shows
better total execution time of jobs and better node utilization
with a smaller number of job migrations. The nodes which
are located far away from each other can communicate
quickly. This approach requires additional hardware for
implementing the single bus structure and arbitration logic.
Venu Gopalachari et al., [6] eliminate the time delay due to
arbitration in the receiver broadcasting algorithm in their
dynamic scheduling using weights algorithm by proposing
that the jobs are assigned to those nodes which have
minimum memory utilization or maximum elapsed time.

IV. RELATED WORKS
Numerous researchers have proposed scheduling algorithms
[2], [12], [13] for parallel and distributed systems, as well as
for Grid computing environment [14], [15], [16], [17], [18],
[19], [20], [21], [22]. For a dynamic load-balancing
algorithm, it is unacceptable to frequently exchange state
information because of the high communication overheads. In
order to reduce the communication overheads, Martin et al.
[23] studied the effects of communication latency, overhead,
and bandwidth in cluster architecture to observe the impact
on application performance. Anand et al. [2] proposed an
estimated load information scheduling algorithm (ELISA),
and Mitzenmacher [24] analyzed the usefulness of the extent
to which old information can be used to estimate the state of
the system. Arora et al. [21] proposed a decentralized load-
balancing algorithm for a Grid environment. Although this
work attempts to include the communication latency between
two nodes during the triggering process on their model, it did
not consider the actual cost for a job transfer. Our approach
takes the job migration cost into account for the load-
balancing decision. In [15], [16], and [18], a sender processor
collects status information about neighboring processors by
communicating with them at every load-balancing instant.
This can lead to frequent message transfers. For a large-scale
Grid environment where communication latency is very
large, the status exchange at each load-balancing instant can

lead to large communication overhead. In our approach,
theproblem of frequent exchange of information is alleviated
by estimating the load, based on the system state information
received at sufficiently large intervals of time. We have
proposed algorithms for a Grid environment that are based on
the estimation approach as carried out in the design of ELISA
[2]. In ELISA, load balancing is carried out based on queue
lengths. Whenever there is a difference in queue length, jobs
will be migrated to the lightly loaded processor, ignoring the
job migration cost. This cost becomes an important factor
when the communication latency is very large such as for a
Grid environment and/or the job size is large. Both of our
algorithms balance the load by considering the job migration
cost, which is primarily influenced by the available
bandwidth between the sender and receiver nodes.

V. OUR WORK
We have proposed two dynamic, adaptive, and decentralized
load balancing algorithms for computational Grid
environments that are shown to be applicable in balancing
loads depending on the size of the underlying Grid
infrastructure. Thus, for smaller size Grids, one of our
algorithms, Load Balancing on Arrival (LBA), is shown to be
effective, whereas for large-scale Grid systems, the Modified
ELISA (MELISA) is shown to have better control in
balancing the loads. One of the key strengths of our algorithm
is in estimating the system parameters and in proactive job
migration. For large-scale Grid environments, resources are
geographically distributed, and the communication latency
between them is also very large due to the WAN through
which they are usually connected. Therefore, the job
migration cost, based on the estimate of the traffic and
loading conditions, becomes an imperative factor for load
balancing. Our proposed algorithms consider the job
migration cost, which is primarily influenced by the available
bandwidth between the sender and receiver nodes, when
making a decision for load balancing. Further, Grid are
dynamic in nature in the sense of resource availability and,
hence, a changing network topology. Resource heterogeneity
and network heterogeneity also exists in the Grid
environment. We have also considered these facts into
account by generating a random topology with nodes of
varying capacities.

VI. SYSTEM MODEL AND PROBLEM DEFINITION
Our Grid system consists of M heterogeneous processors, P1;
P2; . . . ; PM, connected via communication channels
assuming an arbitrary topology (Fig. 1). We assume that each
processor has an infinite capacity buffer to store jobs waiting
for execution. This assumption eliminates the possibility of
dropping a job due to unavailability of buffer space. The jobs
are assumed to arrive randomly at the processors, the
interarrival time being exponentially distributed with average
1/λi. The jobs are assumed to require service time that is
exponentially distributed with mean 1/µi. Each processor is
modeled as an M|M|1 Markov chain, with the number of jobs

Amit Kumar Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 404-409

www.ijcsit.com 405

queued up for processing at each processor representing the
state of the system. Job size is assumed to have a normal
distribution with a given mean and variance. This job size
includes both the program and data sizes. Since in a Grid
environment, the network topology is varying, our model
captures this constraint as well by considering an arbitrary
topology. The data transfer rate is not fixed and varies from
link to link. The processors that are directly connected to a
processor constitute its buddy set. We also assume that each
processor has knowledge about its buddy processors and the
communication latency between them, and load balancing is
carried out within buddy sets only. It may be noted that two
neighboring buddy sets may have a few processors common
to each set. The job arrival rates and service rates are such
that for some processor (say, Pi), λi > μi (that is, Pi is
unstable), but the whole system always remains stable,

Fig 1. Job queue model

In this work, we have considered three performance metrics
of relevance at three different levels. At the job level, we
consider the ART of the jobs processed in the system as the
performance metric. If N jobs are processed by the system,
then

ART = 1/N (Σ (Finish i – Arrival i))
where Arrival i is the time at which the ith job arrives, and
Finish i is the time at which it leaves the system. The delay
due to the job transfer, waiting time in the queue, and
processing time together constitute the response time. At the
system level, we consider the total execution time as the
performance metric to measure the algorithm’s efficiency. It
indicates the time at which all N jobs get executed. At the
processor level, we consider resource utilization as the
performance metric. It is the ratio between the processor’s
busy time to the sum of the processor’s busy and idle time:
Ui = Busy i / (Busy i + Idle i)
where Busyi indicates the amount of time Pi remains busy,
and Idlei indicates the amount of time Pi remains idle during
the total execution time of N jobs.
Thus, our objective is to design efficient load-balancing
algorithms to minimize the ART of the jobs for
computational Grid environments. We propose two different
algorithms, LBA and MELISA, for small-scale and largescale
Grid structures, as mentioned briefly in Section 1.2. Our
algorithms will affect load balancing by careful estimation of
the job arrival rates, CPU processing rates, and loads on the
processor. Further, we take into account the resource
heterogeneity, network heterogeneity, and job migration cost
before a load-balancing decision.

A. Modified Estimated Load Information
Scheduling Algorithm (Melisa)[19]
Although ELISA primarily works on estimates, it is mainly
proposed for cluster-based supercomputing systems wherein
the communication cost is not very large as resources are
connected through a high-bandwidth network. However, for
Grid-based supercomputing systems, the transfer delays are
significantly high, and network heterogeneity also exists in
terms of the varying available network bandwidth
contributing to a large communication cost. Thus, the direct
applicability of ELISA will yield an inferior performance that
is unacceptable for Grid-based systems where heterogeneity
exists in terms of resource and network. Hence, we revisit the
design of ELISA and introduce the job transfer rate explicitly
in a formulation that is more akin for Grids. In ELISA, at
every status exchange time period Ts, each Pi communicates
its status (queue length, estimate of the arrival rate) to all its
buddy processors. At each estimation instant Te, every
processor calculates the queue length on buddy processors
using the estimated arrival rate and exact service rate of a
buddy processor. Pi will make a decision of job migration if
its queue length is greater than the average queue length in its
buddy set. In the design of MELISA, as shown in Fig. 3.3,
each Pi estimates its arrival rate, service rate, and the load at
each status exchange instant. At each estimation instant, Pi
calculates the load on its all buddy processors using. Based
on this calculated buddy load, each processor calculates the
average load in its buddy set. Pi will make a decision of job
migration if its load is greater than the average load in its
buddy set and will try to distribute its load such that load on
all buddy processors get finished at almost the same time,
taking into account the node’s heterogeneity in terms of
processor speed. This average buddy load can be calculated
using the following relationships. Let Si denote the weight of
a processor Pi, which is a normalized measure of its speed.
Therefore, a value of 2 for Si means that Pi will take half
amount of time to execute a job than the time taken by the
reference processor2 having a value of 1 for Si. Here, each Pi
will calculate the average

B. The Algorithm
 At the status exchange instant, for each processor:
1. Estimate the arrival rate and the service rate using the

given equation. Also determine the load on a processor
by dividing its queue length with estimated service rate
using the given equations.

2. Communicate the status defined by a three tuple as
<estimate load, arrival rate, service rate> to all
processors in the buddy set.

3. Call TRANSFER

• At the estimated instant , for each processor
1. Estimate the load for each processor in the buddy set.
2. Call TRANSFER.

Amit Kumar Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 404-409

www.ijcsit.com 406

 By Pi (i=1,2,3…)
1. Estimate an average normalized buddy load.
2. If load of a processor is greater than average load ,

then
i. Construct active set as follows: if a

processor in the buddy set has load less than
average normalized buddy load, include
processor in active set.

ii. Determine how much load can be transferred
to buddy processors in active set such that
load on all processors get finished at almost
same time.

Attempt to migrate the load in excess over average buddy
load to all buddy processors in active set by calculating EFT
(average finish time) on destination processor in the active set
and migrating the job only when EFTi < EFTj.

Fig. 2. Estimation and status exchange intervals

C. The Steps For Simulating Task Scheduling
In this section we present high-level steps to demonstrate
how GridSim 5.2 simulator can be used to simulate a Grid
environment to analyze scheduling algorithms.

a) First, we need to create Grid resources of different
capabilities and configurations. (a single or

multiprocessor with time/space-shared resource

manager)
b) We also need to create users with different

requirements (application and quality of service

requirements).
c) Second, we need to model applications by creating a

number of Gridlets and define all parameters
associated with jobs. The Gridlets need to be

grouped together depending on the application

model.
d) Then, we need to create a GridSim user entity that

creates and interacts with the resource broker
scheduling entity to coordinate execution
experiment. It can also directly interact with GIS
and resource entities for Grid information and
submitting or receiving processed Gridlets.

e) Finally, we need to implement a resource broker
entity that performs application scheduling on Grid

resources.

Fig.3. MELISA alogorithm

VII. RESULTS

Our result comprise of the following tables. These tables
contains the execution details of the algorithms under defined
circumstances. So above details can be easily used to
understand the effect of communication delays occurred
earlier in our algorithm ELISA and MELISA.

A. Comparison of ELISA, MELISA, IMELISA and

CMELISA
We can compare our worked on algorithm with the original
algorithm under the following points.

i) Simulation details for elisa
 Note:
a) Number of gridlets – 03
b) Baud rate (communication speed) = 10 Mbps
c) Gridlet size 900, 600 and 200 respectively for gridlet 0 ,

1 and 2.
d) Centralized scheduling with no status acknowledgement.

Amit Kumar Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 404-409

www.ijcsit.com 407

TABLE 1
GRIDLET EXECUTION DETAILS FOR ELISA

Gridlet.
No.

Gridlet
submit

time(sec)

Gridlet
finish

time(sec)

Gridlet
Execution
time (sec)

Waiting
time (sec)

0 105.0 759.545 654.545
1 105.0 1195.909 1090.9 550.36
2 105.0 1341.364 1236.3 250.46

Total Job execution time = 1236.36 sec

ii) Simulation details for melisa
 Note:
a) Number of gridlets – 03
b) Baud rate (communication speed) = 10 Mbps
c) Gridlet size 900, 600 and 200 respectively for gridlet 0 ,

1 and 2.
d) Distributed scheduling with status acknowledgement

from all gridlets.

TABLE 2
GRIDLET EXECUTION DETAILS FOR MELISA

Gridlet.
No.

Gridlet
Submit

time(sec)

Gridlet
Finish

time(sec)

Gridlet
Execution
time (sec)

0 115.6 835.60 720.0
1 842.0 1322.0 480.0
2 1568.4 1728.40 160.0

Total Job execution time = 1612.8 sec

iii) Simulation details for Improved melisa i.e
Imelisa

 Note:
a) Number of gridlets – 03
b) Baud rate (communication speed) = 10 Mbps
c) Gridlet size 900, 600 and 200 respectively for gridlet 0, 1

and 2.
d) Distributed scheduling with status acknowledgement only

for even numbered gridlets.
TABLE 3

GRIDLET EXECUTION DETAILS FOR IMELISA

Gridlet.
No.

Gridlet
submit

time(sec)

Gridlet
finish

time(sec)

Gridlet
Execution
time (sec)

0 115.6 835.60 720.0
1 842.0 1322.0 480.0
2 842.0 1428.0 586.0

Total Job execution time = 1366.4 sec

iv) Simulation details for centralized melisa i.e
Cmelisa

 Note: a) Number of gridlets – 03
 b) Baud rate (communication speed) = 10 Mbps
 c) Gridlet size 900, 600 and 200 respectively
 for gridlet 0 , 1 and 2.
 d) Distributed scheduling without status

 acknowledgement.

TABLE 4
GRIDLET EXECUTION DETAILS FOR CMELISA

Gridlet.
No.

Gridlet
submit

time(sec)

Gridlet
finish

time(sec)

Gridlet
Execution
time (sec)

0 115.6 835.60 719.4
1 115.6 1315.60 1200.0
2 115.6 1475.60 1360.0

Total Job execution time = 1360.0 sec

Total Execution times of all variants:

TABLE 5
JOB EXECUTION DETAILS OF ALL ALGORITHMS

Execution times
Elisa Melisa Imelisa Cmelisa

1236.36 1612.8 1366.4 1360.0

VIII. RELATIVE COMPARISONS OF ALGORITHMS FOR

EXECUTION TIME.
Melisa > Imelisa > Cmelisa > Elisa

TABLE 6
JOB EXECUTION DETAILS FOR MELISA AND MELISA

Execution time (sec)
Melisa 1612.8
Imelisa 1366.4

Reduced communication 246.4 sec

TABLE 7
JOB EXECUTION DETAILS FOR CMELISA AND IMELISA

Execution time (sec)
Cmelisa 1360.0
Imelisa 1366.4

Reduced communication 6.4 sec

TABLE 8
COMPARISON ON PARAMETERS

Parameters ELISA MELISA IMELISA CMELISA

Communication
overhead

less More Less less
Load balancing
time

less more less less

Scalability Limited Highly Highly moderate

Fault tolerance less Highly Highly moderate

Reliability more more less more

Buffer size large less less more

Amit Kumar Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 404-409

www.ijcsit.com 408

Graphical comparison on results:

Fig 4 . Comparison of execution times

CONCLUSIONS

In this paper, we presented decentralized, scalable, adaptive,
and distributed algorithms for load balancing across resources
for ata-intensive computations on Grid environments. The
objective is to minimize ART and the total execution time for
jobs that arrive at a Grid system for processing. Several
constraints such as communication delays due to the
underlying network, processing delays at the processors, and
an arbitrary topology for a Grid system are explicitly
considered in the problem formulation. Our algorithms are
adaptive in the sense that they estimate different types of
strongly influencing system parameters such as the job arrival
rate, processing rate, and load on the processor and use this
information for estimating the finish time of job on a buddy
processor. Through this study, we demonstrate the usefulness
and effectiveness of the load estimation approach to devise
adaptive and dynamic load-balancing strategies for data
hungry essential computational Grid structures.

Future enhancements:

1. Study of the effect of job file size on the execution
times of tasks and total execution times.

2. Increase in the bandwidth of the networks links to
minimize the execution times.

3. Increasing the internetworks between the processing
elements to increase the fault tolerance property.

4. Categorization of buffer to increase the reliability.

REFERENCES
[1] Ruchir Shah, Bhardwaj Veeravalli, Senior Member, IEEE ,On the Design

of Adaptive and Decentralized Load-Balancing Algorithms with Load
Estimation for Compu tational Grid Environments. IEEE transaction
on parallel and distributed computing, vol. 18, no. 12, December- 2007

[2] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the
Grid:Enabling Scalable Virtual Organizations,” Int’l J. High
Performance Computing Applications, vol. 15, no. 3, pp. 200-222,
2001.

[3] L. Smarr and C.E. Catlett, “Metacomputing,” Comm. ACM, vol. 35, no.
6, pp. 44-52, June 1992.

[4] K. Lu, R. Subrata, A. Zomaya, An Efficient Load Balancing Algorithm
for Heterogeneous Grid Systems Considering Desirability of Grid
Sites,25th IEEE International Conference on Performance, Computing
and Communication, April 2006, pp 320 – 328.

[5] A. Abed, G. Oz, A. Kostin, Competition-Based Load Balancing for
Distributed Systems, Proceedings of the Seventh IEEE International
Symposium on Computer Networks (ISCN' 06),pp 230 – 235.

[6] W. Lee, S.Hong, J.Kim, Dynamic Load Distribution on a Mesh with a
Single Bus, IEEE International Conference on Parallel and Distributed
systems, Dec. 1997, pp 368 – 375.

[7] M. Venu Gopalachari, P. Sammulal, Dr. A. Vinaya Babu, Correlating
Scheduling and Load balancing to achieve optimal performance from a
cluster,2009 WEE International Advance Computing Conference
(IACC 2009), March 2009,pp 320 – 325

[8] A. Abed, G. Oz, A. Kostin, Competition-Based Load Balancing for
Distributed Systems, Seventh IEEE International Symposium on
Computer Networks (ISCN' 06),pp 230 – 235.

[9] R. Shah, B. Veeravalli, M. Misra, On the Design of Adaptive and
Decentralized Load-Balancing Algorithms with Load Estimation for
Computational Grid Environments IEEE Transactions on Parallel and
Distributed systems, Vol. 18, Dec.2007, pp 167 – 1687.

[10] D. Acker, S. Kulkarni, A Dynamic Load Dispersion Algorithm for
Load-Balancing in a Heterogeneous Grid System, Sarnoff Symposium
IEEE, May 2007, pp 1- 5.

[11] L. W. McKnight, J. Howison, S. Bradner, “Wireless Grids: Distributed
Resource Sharing by Mobile, Nomadic, and Fixed Devices”, IEEE
Internet Computing, 2004, Vol.8, No.4, pp.24-31.

[12] G. Li, Y.B. Han, J. Wang, Z.F. Zhao, R. M. Wagner, “Facilitating
Dynamic Service Compositions by Adaptable Service Connectors”,
International Journal of Web Services Research, Vol. 3, No.1, 2006,
pp.68-84.

[13] G. Li, H.M. Sun, “RESTful Dynamic Framework for Services in Mobile
Wireless Networks”, Proceedings of 2009 International Conference on
E-business and information System Security, 2009, pp.156-160.

[14] G. Li, X.J. Ma, Y.B Han, J. Wang “Transprent service composition in
dynamic networks”, Chinese Journal of Computers, 2007, Vol.30,
No.4, pp. 579-587

[16] M. Arora, S.K. Das, and R. Biswas. A de-centralized scheduling and
load balancing algorithm for heterogeneous grid environments. In
Workshop on Scheduling and Resource Management for
ClusterComputing, pages 499–505, 2002.

[17] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R.
Yahyapour. On advantages of grid computing for parallel job
scheduling. In 2nd International Symposium on Cluster Computing and
the Grid, pages 39–46, 2002

[18] G.Coulouris, J.Dollimore, T.Kindberg, Distributed Systems concepts
and Design 4th Edition, Addison Wesley, 2005.

Amit Kumar Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 404-409

www.ijcsit.com 409

