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Abstract- In this paper we have successfully reduced the total 
execution time of jobs submitted in a computational grid. We 
have addressed several important issues like cost, reliability and 
scalability. Centralized Melisa is a load balancing algorithm in 
which a task is scheduled by a central scheduler on several 
status parameters like job queue length, job arrival rate, service 
rate. MELISA, which is applicable to large-scale systems (that 
is, interGrid [1]), is a modified version of ELISA [2] in which we 
consider the job migration cost, resource heterogeneity, and 
network heterogeneity when load balancing is considered. A 
computational Grid is the cooperation of distributed computer 
systems where user jobs can be run on either local or remote 
computer systems In general, any load-balancing algorithm 
consists of two basic policies—a transfer policy and a location 
policy. The transfer policy decides if there is a need to initiate 
load balancing across the system. By using workload 
information, it determines when a node becomes eligible to act 
as a sender (transfer a job to another node) or as a receiver 
(retrieve a job from another node). 
 
Index terms- grid, melisa, cmelisa, elisa, load balancing, 
communication delays 
 

I. INTRODUCTION 
In general, any load-balancing algorithm consists of two 
basic policies—a transfer policy and a location policy. The 
transfer policy decides if there is a need to initiate load 
balancing across the system. By using workload information, 
it determines when a node becomes eligible to act as a sender 
(transfer a job to another node) or as a receiver (retrieve a job 
from another node). The location policy determines a suitably 
underloaded processor. In other words, it locates 
complementary nodes to/from which a node can send/receive 
workload to improve the overall system performance. 
Location-based policies can be broadly classified as sender 
initiated, receiver initiated, or symmetrically initiated. In a 
static algorithm, the scheduling is carried out according to a 
predetermined policy. The state of the system at the time of 
the scheduling is not taken into consideration. On the other 
hand, a dynamic algorithm adapts its decision to the state of 
the system. Adaptive algorithms are a special type of 
dynamic algorithms where the parameters of the algorithm 
and/or the scheduling policy itself is changed based on the 
global state of the system.  
 

Dynamic load balancing algorithms can be further classified 
into a centralized approach and a decentralized approach. 
In the centralized approach only one node in the grid acts as 
the central controller. It allocates jobs to each of the slave 
nodes. The slave nodes execute the jobs assigned by the 
controller. The centralized approach is a simple approach and 
is beneficial when the communication cost is less significant. 
It is mainly used for a small size grid. Although the 
centralized approach is used currently, it limits the scalability 
of the grid by becoming a bottle neck. Also failure of central 
controller can cause the entire system to fail. [5]. 
In the decentralized approach all nodes in the grid are 
involved in making the load balancing decision. The 
decentralized algorithms are scaleable and have better fault 
tolerance. The decentralized approach is preferred because 
elements of the network may vary in capacity or number 
during run time. Although the decentralized approach is 
suitable for dynamic heterogeneous resources it increases the 
communication overhead to a large extent. [5] 
 

II. METRICS FOR COMPARING VARIOUS DYNAMIC 

LOAD BALANCING ALGORITHMS FOR HETEROGENEOUS 

RESOURCES 
 

The various metrics identified for comparing the load 
balancing algorithms are- 
•Communication overhead- communication overhead is the 

status information which each node has to provide to 
other nodes in the grid. 

• Load balancing time - Amount of time that elapses 
between the job arrival time and the time at which the 
job is finally accepted by a node. 

• Scalability - It is the ability of the algoritm to perform load 
balancing for a grid with any finite number of nodes. 

•Fault tolerance - It is the ability of the algorithm to perform 
uniform load balancing in spite of arbitrary node or link  
failure. 

•Reliability - It is the ability of the algorithm to schedule job 
in predetermined amount of time. 

•Stability - It is defined as the maximum job arrival rate   
 which the load balancing algorithm. 
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III. VARIOUS DYNAMIC LOAD BALANCING 

ALGORITHMS 
The centralized and decentralized load balancing algorithms 
can be further classified into sender-initiated algorithms, 
receiver-initiated algorithms and symmetrically initiated 
algorithms according to their location policies. Sender 
initiated algorithms let the heavily loaded nodes take the 
initiative to request the lightly loaded nodes to receive the 
jobs; while receiver initiated algorithms let the lightly loaded 
nodes invite heavily loaded nodes to send their jobs. 
Symmetrically-initiated algorithms combine the advantages 
of both sender and receiver initiated algorithms. [5][1] Lee et 
al., [8] propose in the receiver initiated receiver broadcasting 
algorithm that whenever a processor in the grid becomes idle 
it broadcasts a request message. After receiving this request, 
the most heavily loaded node sends a task to the idle 
processor. This algorithm does not require an information 
process to collect the load information of other nodes, which 
incurs heavy communication traffic. This algorithm shows 
better total execution time of jobs and better node utilization 
with a smaller number of job migrations. The nodes which 
are located far away from each other can communicate 
quickly. This approach requires additional hardware for 
implementing the single bus structure and arbitration logic. 
Venu Gopalachari et al., [6] eliminate the time delay due to 
arbitration in the receiver broadcasting algorithm in their 
dynamic scheduling using weights algorithm by proposing 
that the jobs are assigned to those nodes which have 
minimum memory utilization or maximum elapsed time. 
 

IV. RELATED WORKS 
Numerous researchers have proposed scheduling algorithms 
[2], [12], [13] for parallel and distributed systems, as well as 
for Grid computing environment [14], [15], [16], [17], [18], 
[19], [20], [21], [22]. For a dynamic load-balancing 
algorithm, it is unacceptable to frequently exchange state 
information because of the high communication overheads. In 
order to reduce the communication overheads, Martin et al. 
[23] studied the effects of communication latency, overhead, 
and bandwidth in cluster architecture to observe the impact 
on application performance. Anand et al. [2] proposed an 
estimated load information scheduling algorithm (ELISA), 
and Mitzenmacher [24] analyzed the usefulness of the extent 
to which old information can be used to estimate the state of 
the system. Arora et al. [21] proposed a decentralized load-
balancing algorithm for a Grid environment. Although this 
work attempts to include the communication latency between 
two nodes during the triggering process on their model, it did 
not consider the actual cost for a job transfer. Our approach 
takes the job migration cost into account for the load-
balancing decision. In [15], [16], and [18], a sender processor 
collects status information about neighboring processors by 
communicating with them at every load-balancing instant. 
This can lead to frequent message transfers. For a large-scale 
Grid environment where communication latency is very 
large, the status exchange at each load-balancing instant can 

lead to large communication overhead. In our approach, 
theproblem of frequent exchange of information is alleviated 
by estimating the load, based on the system state information 
received at sufficiently large intervals of time. We have 
proposed algorithms for a Grid environment that are based on 
the estimation approach as carried out in the design of ELISA 
[2]. In ELISA, load balancing is carried out based on queue 
lengths. Whenever there is a difference in queue length, jobs 
will be migrated to the lightly loaded processor, ignoring the 
job migration cost.  This cost becomes an important factor 
when the communication latency is very large such as for a 
Grid environment and/or the job size is large. Both of our 
algorithms balance the load by considering the job migration 
cost, which is primarily influenced by the available 
bandwidth between the sender and receiver nodes. 
 

V. OUR WORK 
We have proposed two dynamic, adaptive, and decentralized 
load balancing algorithms for computational Grid 
environments that are shown to be applicable in balancing 
loads depending on the size of the underlying Grid 
infrastructure. Thus, for smaller size Grids, one of our 
algorithms, Load Balancing on Arrival (LBA), is shown to be 
effective, whereas for large-scale Grid systems, the Modified 
ELISA (MELISA) is shown to have better control in 
balancing the loads. One of the key strengths of our algorithm 
is in estimating the system parameters and in proactive job 
migration. For large-scale Grid environments, resources are 
geographically distributed, and the communication latency 
between them is also very large due to the WAN through 
which they are usually connected. Therefore, the job 
migration cost, based on the estimate of the traffic and 
loading conditions, becomes an imperative factor for load 
balancing. Our proposed algorithms consider the job 
migration cost, which is primarily influenced by the available 
bandwidth between the sender and receiver nodes, when 
making a decision for load balancing. Further, Grid are 
dynamic in nature in the sense of resource availability and, 
hence, a changing network topology. Resource heterogeneity 
and network heterogeneity also exists in the Grid 
environment. We have also considered these facts into 
account by generating a random  topology with nodes of 
varying capacities. 
  

VI. SYSTEM MODEL AND PROBLEM DEFINITION 
Our Grid system consists of M heterogeneous processors, P1; 
P2; . . . ; PM, connected via communication channels 
assuming an arbitrary topology (Fig. 1). We assume that each 
processor has an infinite capacity buffer to store jobs waiting 
for execution. This assumption eliminates the possibility of 
dropping a job due to unavailability of buffer space. The jobs 
are assumed to arrive randomly at the processors, the 
interarrival time being exponentially distributed with average 
1/λi. The jobs are assumed to require service time that is 
exponentially distributed with mean 1/µi. Each processor is 
modeled as an M|M|1 Markov chain, with the number of jobs 
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queued up for processing at each processor representing the 
state of the system. Job size is assumed to have a normal 
distribution with a given mean and variance. This job size 
includes both the program and data sizes. Since in a Grid 
environment, the network topology is varying, our model 
captures this constraint as well by considering an arbitrary 
topology. The data transfer rate is not fixed and varies from 
link to link. The processors that are directly connected to a 
processor constitute its buddy set. We also assume that each 
processor has knowledge about its buddy processors and the 
communication latency between them, and load balancing is 
carried out within buddy sets only. It may be noted that two 
neighboring buddy sets may have a few processors common 
to each set. The job arrival rates and service rates are such 
that for some processor (say, Pi), λi > μi (that is, Pi is 
unstable), but the whole system always remains stable, 
 

 
Fig 1. Job queue model 

 
In this work, we have considered three performance metrics 
of relevance at three different levels. At the job level, we 
consider the ART of the jobs processed in the system as the 
performance metric. If N jobs are processed by the system, 
then 

ART = 1/N (Σ (Finish i – Arrival i )) 
where Arrival i is the time at which the ith job arrives, and 
Finish i is the time at which it leaves the system. The delay 
due to the job transfer, waiting time in the queue, and 
processing time together constitute the response time. At the 
system level, we consider the total execution time as the 
performance metric to measure the algorithm’s efficiency. It 
indicates the time at which all N jobs get executed. At the 
processor level, we consider resource utilization as the 
performance metric. It is the ratio between the processor’s 
busy time to the sum of the processor’s busy and idle time: 
Ui = Busy i / (Busy i  + Idle i) 
where Busyi indicates the amount of time Pi remains busy, 
and Idlei indicates the amount of time Pi remains idle during 
the total execution time of N jobs.  
Thus, our objective is to design efficient load-balancing 
algorithms to minimize the ART of the jobs for 
computational Grid environments. We propose two different 
algorithms, LBA and MELISA, for small-scale and largescale 
Grid structures, as mentioned briefly in Section 1.2. Our 
algorithms will affect load balancing by careful estimation of 
the job arrival rates, CPU processing rates, and loads on the 
processor. Further, we take into account the resource 
heterogeneity, network heterogeneity, and job migration cost 
before a load-balancing decision. 

A. Modified Estimated Load Information 
Scheduling Algorithm (Melisa)[19] 
Although ELISA primarily works on estimates, it is mainly 
proposed for cluster-based supercomputing systems wherein 
the communication cost is not very large as resources are 
connected through a high-bandwidth network. However, for 
Grid-based supercomputing systems, the transfer delays are 
significantly high, and network heterogeneity also exists in 
terms of the varying available network bandwidth 
contributing to a large communication cost. Thus, the direct 
applicability of ELISA will yield an inferior performance that 
is unacceptable for Grid-based systems where heterogeneity 
exists in terms of resource and network. Hence, we revisit the 
design of ELISA and introduce the job transfer rate explicitly 
in a formulation that is more akin for Grids. In ELISA, at 
every status exchange time period Ts, each Pi communicates 
its status (queue length, estimate of the arrival rate) to all its 
buddy processors. At each estimation instant Te, every 
processor calculates the queue length on buddy processors 
using the estimated arrival rate and exact service rate of a 
buddy processor. Pi will make a decision of job migration if 
its queue length is greater than the average queue length in its 
buddy set. In the design of MELISA, as shown in Fig. 3.3, 
each Pi estimates its arrival rate, service rate, and the load at 
each status exchange instant. At each estimation instant, Pi 
calculates the load on its all buddy processors using. Based 
on this calculated buddy load, each processor calculates the 
average load in its buddy set. Pi will make a decision of job 
migration if its load is greater than the average load in its 
buddy set and will try to distribute its load such that load on 
all buddy processors get finished at almost the same time, 
taking into account the node’s heterogeneity in terms of 
processor speed. This average buddy load can be calculated 
using the following relationships. Let Si denote the weight of 
a processor Pi, which is a normalized measure of its speed. 
Therefore, a value of 2 for Si means that Pi will take half 
amount of time to execute a job than the time taken by the 
reference processor2 having a value of 1 for Si. Here, each Pi 
will calculate the average  
 
B. The Algorithm 
 At the status exchange instant, for each processor: 
1. Estimate the arrival rate and the service rate using the 

given equation. Also determine the load on a processor 
by dividing its queue length with estimated service rate 
using the given equations. 

2. Communicate the status defined by a three tuple as 
<estimate load, arrival rate, service rate> to all 
processors in the buddy set. 

3. Call TRANSFER 
 

• At the estimated instant , for each processor 
1. Estimate the load for each processor in the buddy set. 
2. Call TRANSFER. 
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 By Pi (i=1,2,3…) 
1. Estimate an average normalized buddy load. 
2. If load of a processor is greater than average load , 

then 
i. Construct active set as follows:  if a 

processor in the buddy set has load less than 
average normalized buddy load, include 
processor in active set. 

ii. Determine how much load can be transferred 
to buddy processors in active set such that 
load on all processors get finished at almost 
same time. 

Attempt to migrate the load in excess over average buddy 
load to all buddy processors in active set by calculating EFT 
(average finish time) on destination processor in the active set 
and migrating the job only when EFTi < EFTj. 
 

 
Fig. 2. Estimation and status exchange intervals 

 
C. The Steps For Simulating Task Scheduling 
In this section we present high-level steps to demonstrate 
how GridSim 5.2 simulator can be used to simulate a Grid 
environment to analyze scheduling algorithms.  

a)  First, we need to create Grid resources of different 
capabilities and configurations.    (a single or

 

multiprocessor with time/space-shared resource
 

manager) 
b) We also need to create users with different 

requirements (application and quality of service
 

requirements). 
c) Second, we need to model applications by creating a 

number of Gridlets and define all parameters 
associated with jobs. The Gridlets need to be

 

grouped together depending on the application
 

model. 
d) Then, we need to create a GridSim user entity that

 

creates and interacts with the resource broker 
scheduling entity to coordinate execution 
experiment. It can also directly interact with GIS 
and resource entities for Grid information and 
submitting or receiving processed Gridlets. 

e) Finally, we need to implement a resource broker 
entity that performs application scheduling on Grid

 

resources.  
 

 
Fig.3.  MELISA alogorithm 

 
VII. RESULTS 

Our result comprise of the following tables. These tables 
contains the execution details of the algorithms under defined 
circumstances.  So above details can be easily used to 
understand the effect of communication delays occurred 
earlier in our algorithm ELISA and MELISA. 

 
A. Comparison of ELISA, MELISA, IMELISA and 

CMELISA 
We can compare our worked on algorithm with the original 
algorithm under the following points. 
 

i) Simulation details for elisa 
      Note:      
a)    Number of gridlets – 03 
b)    Baud rate (communication speed) = 10 Mbps 
c)    Gridlet size 900, 600 and 200 respectively for gridlet 0 , 

1 and 2. 
d)   Centralized scheduling with no status acknowledgement. 
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TABLE 1 
GRIDLET EXECUTION DETAILS FOR ELISA 

Gridlet. 
No. 

Gridlet 
submit 

time(sec) 

Gridlet 
finish 

time(sec) 

Gridlet 
Execution 
time (sec) 

Waiting 
time (sec) 

0 105.0 759.545 654.545  
1 105.0 1195.909 1090.9 550.36 
2 105.0 1341.364 1236.3 250.46 

Total Job execution time = 1236.36 sec 
 

ii) Simulation details for melisa 
      Note:     
a)    Number of gridlets – 03 
b)    Baud rate (communication speed) = 10 Mbps 
c)    Gridlet size 900, 600 and 200 respectively for gridlet 0 , 

1 and 2. 
d)    Distributed scheduling with status  acknowledgement 

from all gridlets. 
 

TABLE 2 
GRIDLET EXECUTION DETAILS FOR MELISA 

Gridlet. 
No. 

Gridlet 
Submit 

time(sec) 

Gridlet 
Finish 

time(sec) 

Gridlet 
Execution 
time (sec) 

0 115.6 835.60 720.0 
1 842.0 1322.0 480.0 
2 1568.4 1728.40 160.0 

Total Job execution time = 1612.8 sec  
 

iii) Simulation details for Improved melisa i.e 
Imelisa 

      Note:     
a)   Number of gridlets – 03 
b)   Baud rate (communication speed) = 10 Mbps 
c)   Gridlet size 900, 600 and 200 respectively for gridlet 0, 1 

and 2. 
d)   Distributed scheduling with status acknowledgement only 

for even numbered   gridlets. 
TABLE 3 

GRIDLET EXECUTION DETAILS FOR IMELISA 

Gridlet. 
No. 

Gridlet 
submit 

time(sec) 

Gridlet 
finish 

time(sec) 

Gridlet 
Execution 
time (sec) 

0 115.6 835.60 720.0 
1 842.0 1322.0 480.0 
2 842.0 1428.0 586.0 

Total Job execution time = 1366.4 sec  
 

iv) Simulation details for centralized melisa i.e 
Cmelisa 

      Note:     a)    Number of gridlets – 03 
                    b)   Baud rate (communication speed) = 10 Mbps 
                    c)   Gridlet size 900, 600 and 200 respectively  
                           for gridlet 0 , 1 and 2. 
                    d)   Distributed scheduling without status  

            acknowledgement. 
 

TABLE 4 
GRIDLET EXECUTION DETAILS FOR CMELISA 

Gridlet. 
No. 

Gridlet 
submit 

time(sec) 

Gridlet 
finish 

time(sec) 

Gridlet 
Execution 
time (sec) 

0 115.6 835.60 719.4 
1 115.6 1315.60 1200.0 
2 115.6 1475.60 1360.0 

Total Job execution time = 1360.0 sec 
 
Total Execution times of all variants: 
 

TABLE 5 
JOB EXECUTION DETAILS OF ALL ALGORITHMS 

Execution times 
Elisa Melisa Imelisa Cmelisa 

1236.36 1612.8 1366.4 1360.0 
 
 

VIII. RELATIVE COMPARISONS OF ALGORITHMS FOR 

EXECUTION TIME.  
Melisa > Imelisa > Cmelisa > Elisa 

 
 

TABLE 6 
JOB EXECUTION DETAILS FOR MELISA AND  MELISA 

Execution time (sec) 
Melisa 1612.8 
Imelisa 1366.4 

Reduced communication 246.4 sec 
 
 

TABLE 7 
JOB EXECUTION DETAILS FOR CMELISA AND IMELISA 

Execution time (sec) 
Cmelisa  1360.0 
Imelisa 1366.4 

Reduced communication 6.4 sec 
 
 

TABLE 8 
COMPARISON ON PARAMETERS 

Parameters ELISA MELISA IMELISA CMELISA 

Communication 
overhead 

less More Less less 
Load balancing 
time 

less more less less 

Scalability Limited Highly Highly moderate 

Fault tolerance less Highly Highly moderate 

Reliability more more less more 

Buffer size large less less more 
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Graphical comparison on results: 
 

 
Fig 4 . Comparison of execution times 

 
 

CONCLUSIONS 

In this paper, we presented decentralized, scalable, adaptive, 
and distributed algorithms for load balancing across resources 
for  ata-intensive computations on Grid environments. The 
objective is to minimize ART and the total execution time for 
jobs that arrive at a Grid system for processing. Several 
constraints such as  communication delays due to the 
underlying network, processing delays at the processors, and 
an arbitrary topology for a Grid system are explicitly 
considered in the problem formulation. Our algorithms are 
adaptive in the sense that they estimate different types of 
strongly influencing system parameters such as the job arrival 
rate, processing rate, and load on the processor and use this 
information for estimating the finish time of job on a buddy 
processor. Through this study, we demonstrate the usefulness 
and effectiveness of the load estimation approach to devise 
adaptive and dynamic load-balancing strategies for data 
hungry essential computational Grid structures. 

Future enhancements: 

1. Study of the effect of job file size on the execution 
times of tasks and total execution times. 

2. Increase in the bandwidth of the networks links to 
minimize the execution times. 

3. Increasing the internetworks between the processing 
elements to increase the fault tolerance property. 

4. Categorization of buffer to increase the reliability. 
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